A PASSION FOR PERFECTION

Operating Instructions

Product Identification

In all communications with Pfeiffer Vacuum, please specify the information on the product nameplate. For convenient reference copy that information into the space provided below.

Contents

Product Identification Validity Intended Use	2 2 2
Functional Principle	2
 Safety Symbols Used Personnel Qualifications General Safety Instructions Liability and Warranty 	4 4 4 4
2 Technicale Data	5
 3 Installation 3.1 Vacuum Connection 3.1.1 Making the Flange Connection 3.1.2 Removing and Installing the Electronics Unit 3.1.3 Using the Optional Baffle 3.2 Electrical Connection 3.2.1 Use With Pfeiffer Vacuum Gauge Controllers 3.2.2 Use With Other Controllers 	8 9 9 10 12 12 12
 4 Operation 4.1 Measuring Principle, Measuring Behavior 4.2 Operational Principle of the Gauge 4.3 Putting the Gauge Into Operation 4.4 Degas 4.6 RS232C Interface 4.6.1 Description of the Functions 4.6.1.1 Output String (Transmit) 4.6.1.2 Input String (Receive) 	15 16 16 17 17 17 17
5 Deinstallation	20
 6 Maintenance, Repair 6.1 Maintenance 6.1.1 Cleaning the Gauge 6.2 Adjusting the Gauge 6.2.1 Adjustment at Atmospheric Pressure 6.2.2 Zero Point Adjustment 6.3 What to Do in Case of Problems 6.4 Replacing the Sensor 	21 21 21 21 21 22 23 24
7 Options	25
8 Spare Parts	25
9 Storage	25
10 Returning the Product	26
11 Disposal	26
Appendix A: Relationship Output Signal – Pressure B: Gas Type Dependence C: Literature	27 27 28 29

For cross-references within this document, the symbol ($\rightarrow \mathbb{B}$ XY) is used, for cross-references to further documents, listed under literature, the symbol ($\rightarrow \square$ [Z]).

1 Safety

1.1 Symbols Used

Symbols for residual risks

STOP) DANGER

Information on preventing any kind of physical injury.

Information on preventing extensive equipment and environmental damage.

Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

1.2 Personnel Qualifications

1.3 General Safety Instructions

All work described in this document may only be carried out by persons who

Skilled personnel

have suitable technical training and the necessary experience or who have been instructed by the end-user of the product.

• Adhere to the applicable regulations and take the necessary precautions for the process media used.

Consider possible reactions between the materials (\rightarrow ${\ensuremath{\mathbb B}}$ 5) and the process media.

Consider possible reactions (e.g. explosion) of the process media due to the heat generated by the product.

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to other users.

1.4 Liability and Warranty

Pfeiffer Vacuum assumes no liability and the warranty becomes null and void if the end-user or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of changes (modifications, alterations etc.) to the product
- use the product with accessories not listed in the corresponding product documentation.

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filaments) are not covered by the warranty.

1 空

蒙天

2 Technical Data

Measurement	Display range (air, O ₂ , CO, N ₂ ,) Measuring range (air, O ₂ , CO, N ₂ ,) Accuracy	5×10 ⁻¹⁰ … 1000 mbar, continuous 1×10 ⁻⁸ … 10 ⁻² mbar, continuous 15% of reading (after 5 min stabilization)			
	Repeatability	5% of reading (after 5 min stabilization)			
	Gas type dependence	\rightarrow Appendix B			
Emission	Switching on threshold Switching off threshold	2.4×10 ⁻² mbar 3.2×10 ⁻² mbar			
	Emission current p ≤7.2×10 ⁻⁶ mbar 7.2×10 ⁻⁶ mbar -2 mbar	5 mA 25 µA			
	Emission current switching 25 μ A \Rightarrow 5 mA 5 mA \Rightarrow 25 μ A	7.2×10 ⁻⁶ mbar 3.2×10 ⁻⁵ mbar			
	I				
Degas	Degas emission current (p <7.2×10 ⁻⁶ mbar)	≈16 mA (P _{degas} ≈4 W)			
	Control input signal	0 V/+24 VDC, active high (control via RS232 →			
	Duration	max. 3 min, followed by automatic stop			
	In degas mode, ITR 90 gauges keep sup tolerances may be higher than during no	oplying measurement values, however their ormal operation.			
Output signal	Output signal (measuring signal)	0 +10 V			
	Display range	0.774 V … +10 V (5×10 ⁻¹⁰ mbar … 1000 mbar)			
	Relationship voltage-pressure	logarithmic, 0.75 V/decade (→ Appendix A)			
	Error signal	<0.3 V/0.5 V (→ 🖹 23)			
	Minimum load impedance	10 kΩ			
Power supply	STOP DANGER				
	The gauge must only be con control devices that conform low voltage (PELV). The con (Pfeiffer Vacuum controller fu	nected to power supplies, instruments or to the requirements of a grounded extra- nection to the gauge has to be fused ulfill these requirements).			

Operating voltage at the ITR 90	+24 VDC (20 28 VDC) ¹⁾ ripple max. 2 V _{pp}
Power consumption	
Standard	≤0.5 A
Degas	≤0.8 A
Emission start (<200 ms)	≤1.4 A
Power consumption	≤16 W
Fuse necessary	1.25 AT

¹⁾ Measured at sensor cable connector (consider the volta; the sensor cable length).

Sensor cable	Electrical connector Cable for ITR 90	D-Sub, 15-pin, male (\rightarrow 🗎 13)			
	Without degas function	4 conductors plus shielding			
	Analog values With degas function	5 conductors plus shielding			
	Analog values With degas function And RS232C interface	7 conductors plus shielding			
	Max. cable length (supply voltage 24 V ¹⁾) Analog operation	≤35 m, conductor cross-section 0.25 mm² ≤50 m, conductor cross-section 0.34 mm² ≤100 m, conductor cross-section 1.0 mm²			
	RS232C operation	≤30 m			
	Gauge identification	42 $k\Omega$ resistor between Pin 10 (sensor cable) and GND			
RS232C interface	Data rate	9600 Baud			
	Data format	binary 8 data bits one stop bit no parity bit no handshake			
	Connections (sensor cable connector) TxD (Transmit Data)	Pin 13			
	RxD (Receive Data) GND	Pin 14 Pin 5			
	Function and interface protocol of the RS	232C interface \rightarrow 🗎 17			
Vacuum	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode	232C interface → \blacksquare 17 stainless steel NiFe, nickel plated glass iridium, vttrium oxide (Y ₂ O ₂)			
Vacuum	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element	232C interface $\rightarrow \blacksquare 17$ stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper			
Vacuum	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R	232C interface → \blacksquare 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³			
Vacuum	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure	232C interface \rightarrow i 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³ 2 bar (absolute)			
Vacuum	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure	232C interface \rightarrow stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³ 2 bar (absolute)			
Vacuum Weight	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R	232C interface → \blacksquare 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³ 2 bar (absolute) ≈290 g ≈550 g			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures	232C interface → \blacksquare 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³ 2 bar (absolute) ≈290 g ≈550 g			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures Storage	232C interface → \blacksquare 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper ≤24 cm ³ ≤34 cm ³ 2 bar (absolute) ~290 g ~550 g			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures Storage Operation	232C interface → 🖹 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper $\leq 24 \text{ cm}^{3}$ $\leq 34 \text{ cm}^{3}$ 2 bar (absolute) $\approx 290 \text{ g}$ $\approx 550 \text{ g}$ -20 70 °C 0 50 °C			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures Storage Operation Bakeout	232C interface → 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper $\leq 24 \text{ cm}^{3}$ $\leq 34 \text{ cm}^{3}$ 2 bar (absolute) $\approx 290 \text{ g}$ $\approx 550 \text{ g}$ -20 70 °C 0 50 °C +150 °C (without electronics unit)			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures Storage Operation Bakeout Relative humidity (year's mean / during 60 days)	232C interface → 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper $\leq 24 \text{ cm}^{3}$ $\leq 34 \text{ cm}^{3}$ $\geq 2 \text{ bar (absolute)}$ $\approx 290 \text{ g}$ $\approx 550 \text{ g}$ -20 70 °C 0 50 °C +150 °C (without electronics unit) $\leq 65 / 85\%$ (no condensation)			
Vacuum Weight Ambiance	Function and interface protocol of the RS Materials exposed to vacuum Housing, supports, screens Feedthroughs Insulator Cathode Cathode holder Pirani element Internal volume DN 25 ISO-KF DN 40 CF-R Max. Pressure DN 25 ISO-KF DN 40 CF-R Admissible temperatures Storage Operation Bakeout Relative humidity (year's mean / during 60 days) Use	232C interface → 🖹 17 stainless steel NiFe, nickel plated glass iridium, yttrium oxide (Y ₂ O ₃) molybdenum tungsten, copper $\leq 24 \text{ cm}^{3}$ $\leq 34 \text{ cm}^{3}$ 2 bar (absolute) $\approx 290 \text{ g}$ $\approx 550 \text{ g}$ -20 70 °C 0 50 °C +150 °C (without electronics unit) $\leq 65 / 85\%$ (no condensation) indoors only altitude up to 2000 m NN			

4-40UNC 2B 4-40UNC 2B ঠ 5 6 6 Cauge PFEIFFER 📂 VACUUM FullRange* Gauge PFEIFFER ullRange 153 159 Р2 К ₽8 DN 25 ISO-KF 33 33 DN 40 CF-R

Dimensions [mm]

3 Installation

3.1 Vacuum Connection

(STOP)

DANGER: overpressure in the vacuum system >1 bar

Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.

Do not open any clamps while the vacuum system is pressurized. Use the type of clamps which are suited to overpressure.

STOP) DANGER

DANGER

The gauge must be electrically connected to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:

- CF connections fulfill this requirement
- For gauges with a KF vacuum connection, use a conductive metallic clamping ring.

Caution

Caution: vacuum component

Dirt and damages impair the function of the vacuum component.

When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

P

The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber, preferably choose a horizontal to upright position. See dimensional drawing for space requirements ($\rightarrow \blacksquare$ 7).

When installing the gauge, make sure that the area around the connector is accessible for the tools required for adjustment while the gauge is mounted (\rightarrow \cong 21).

When installing the gauge, allow for installing/deinstalling the connectors and accommodation of cable loops.

3.1.1 Making the Flange Connection

Procedure

It is recommended not to apply any vacuum grease.

The protective lid will be needed for maintenance.

3.1.2 Removing and Installing the Electronics Unit

Required tool

Removing the electronics unit

• Allen key, size 2.5 mm

Unscrew the hexagon socket set screw (1) on the side of the electronics unit (2).

Remove the electronics unit without twisting it.

D

Removal of the electronics unit is completed.

Installing the electronics unit

Place the electronics unit on the sensor (3) (be careful to correctly align the pins and notch (4)).

Slide the electronics unit in to the mechanical stop and lock it with the hexagon socket set screw (1).

The electronics unit is now installed.

optional baffle ($\rightarrow \blacksquare 25$) is recommended.

3.1.3 Using the Optional Baffle

Installing/deinstalling the baffle

The optional baffle will be installed at the sensor opening of the deinstalled gauge (Deinstallation $\rightarrow \square$ 20).

In severely contaminating processes and to protect measurement electrodes optically against light and fast charged particles, replacement of the built-in grid by the

Required tools / material

- Baffle (\rightarrow \cong 25)
- Pointed tweezers
- Pin (e.g. pencil)
- Screwdriver No 1

The baffle is now installed (Installation of the gauge \rightarrow \boxtimes 8).

BG 5040 BEN (2015-12) ITR90.oi

Deinstallation

Carefully remove the baffle with the screwdriver.

3.2 Electrical Connection

3.2.1 Use With Pfeiffer Vacuum Gauge Controllers

Procedure

3.2.2 Use With Other

Controllers

Cable type

Procedure

See Pfeiffer Vacuum sales literature and data sources for controllers and our range of sensor cables on our internet home page (www.pfeiffer-vacuum.com).

Plug the sensor connector into the gauge and secure it with the locking screws.

Connect the other end of the sensor cable to the Pfeiffer Vacuum controller and secure it.

The gauge can also be operated with other controllers.

The application and length of the sensor cable have to be considered when determining the number and cross sections of the conductors ($\rightarrow \square 6$).

Open the cable connector (D-Sub, 15-pin, female).

Prepare the cable and solder/crimp it to the connector as indicated in the diagram of the gauge used:

Sensor cable connection **ITR 90**

Pin 7 Degas on, active high

- Pin 8 Supply
- Pin 10 Gauge identification
- Pin 12 Signal common, GND
- Pin 13 RŠ232C, TxD
- Pin 14 RS232C, RxD
- Pin 15 Shielding, housing, GND
- Pins 1, 3, 4, 6, 9 and 11 are not connected internally.

WARNING \İ.

The supply common (Pin 5) and the shielding (Pin 15) must be connected at the supply unit with protective ground. Incorrect connection, incorrect polarity or inadmissible supply voltages can damage the gauge.

+24 VDC

For cable lengths up to 5 m (0.34 mm² conductor cross-section) the output signal can be measured directly between the positive signal output (Pin 2) and supply common GND (Pin 5) without loss of accuracy. At greater cable lengths, differential measurement between signal output (Pin 2) and signal common (Pin 12) is recommended.

4

Reassemble the cable connector.

On the other cable end, terminate the cable according to the requirements of the gauge controller you are using.

Plug the sensor connector into the gauge and secure it with the locking screws.

Connect the other end of the sensor cable to the connector of the instrument or gauge controller you are using.

The gauge can now be operated via analog and RS232C interface.

4 Operation

4.1 Measuring Principle, Measuring Behavior

Bayard-Alpert

The ITR 90 vacuum gauge consist of two separate measuring systems (hot cathode Bayard-Alpert (BA) and Pirani).

The BA measuring system uses an electrode system according to Bayard-Alpert which is designed for a low x-ray limit.

The measuring principle of this measuring system is based on gas ionization. Electrons emitted by the hot cathode (F) ionize a number of molecules proportional to the pressure in the measuring chamber. The ion collector (IC) collects the thus generated ion current I^+ and feeds it to the electrometer amplifier of the measurement instrument. The ion current is dependent upon the emission current I_e , the gas type, and the gas pressure p according to the following relationship:

$$I^+ = I_e \times p \times C$$

Factor C represents the sensitivity of the gauge head. It is generally specified for $N_{\rm 2}.$

The lower measurement limit is 5×10⁻¹⁰ mbar (gauge metal sealed).

To usefully cover the whole range of 5×10^{-10} mbar ... 10^{-2} mbar, a low emission current is used in the high pressure range (fine vacuum) and a high emission current is used in the low pressure range (high vacuum). The switching of the emission current takes place at decreasing pressure at approx. 7.2×10^{-6} mbar, at increasing pressure at approx. 3.2×10^{-5} mbar. At the switching threshold, the ITR 90 can temporarily (<2 s) deviate from the specified accuracy.

Diagram of the BA measuring system

- F hot cathode (filament)
- IC ion collector
- EC anode (electron collector)

Pirani

Within certain limits, the thermal conductibility of gases is pressure dependent. This physical phenomenon is used for pressure measurement in the thermal conductance vacuum meter according to Pirani. A self-adjusting bridge is used as measuring circuit (\rightarrow schematic). A thin tungsten wire forms the sensor element. Wire resistance and thus temperature are kept constant through a suitable control circuit. The electric power supplied to the wire is a measure for the thermal conductance and thus the gas pressure. The basic principle of the self-adjusting bridge circuit is shown in the following schematic.

Schematic U. Pirani sensor -The bridge voltage U_B is a measure for the gas pressure and is further processed electronically (linearization, conversion). Measuring range The ITR 90 gauge s continuously cover the measuring range 5×10⁻¹⁰ mbar ... 1000 mbar. The Pirani constantly monitors the pressure. The hot cathode (controlled by the Pirani) is activated only at pressures <2.4×10⁻² mbar. If the measured pressure is higher than the switching threshold, the hot cathode is switched off and the Pirani measurement value is output. If the Pirani measurement drops below the switching threshold ($p = 2.4 \times 10^{-2}$ mbar), the hot cathode is switched on. After heating up, the measured value of the hot cathode is fed to the output. In the overlapping range of $5.5 \times 10^{-3} \dots 2.0 \times 10^{-2}$ mbar, the output signal is generated from both measurements. Pressure rising over the switching threshold (p = 3.2×10^{-2} mbar) causes the hot cathode to be switched off. The Pirani measurement value is output. Gas type dependence The output signal is gas type dependent. The characteristic curves are accurate for dry air, N₂ and O₂. They can be mathematically converted for other gases $(\rightarrow \text{Appendix B}).$ 4.2 Operational Principle of The measuring currents of the Bayard-Alpert and Pirani sensor are converted into a frequency. A micro-controller converts this frequency into a digital value reprethe Gauge senting the measured total pressure. After further processing this value is available as analog measurement signal (0 ... +10 V) at the output (sensor cable connector Pin 2 and Pin 12). The maximum output signal is internally limited to +10 V (≜ atmosphere). The measured value can be read as digital value through the RS232C interface (Pins 13, 14, 15) ($\rightarrow \blacksquare$ 17). The default setting of the displayed pressure unit is mbar. It can be modified via the RS232C interface ($\rightarrow \square$ 17). In addition to converting the output signal, the micro controller's functions include monitoring of the emission, calculation of the total pressure based on the measurements of the two sensors, and communication via RS232C interface. 4.3 Putting the Gauge Into When the operating voltage is supplied (\rightarrow Technical Data), the output signal is available between Pin 2 (+) and Pin 12 (-) of the sensor cable connector Operation (Relationship output signal – pressure \rightarrow Appendix A). Allow for a stabilizing time of approx. 10 min. Once the gauge has been switched on, permanently leave it on irrespective of the pressure. Communication via the digital interface is described in a separate section.

4.4 Degas

Contamination

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filaments) are not covered by the warranty.

Deposits on the electrode system of the BA gauge can lead to unstable measurement readings.

The degas process allows in-situ cleaning of the electrode system by heating the electron collector grid to approx. 700 $^\circ\text{C}$ by electron bombardment.

Depending on the application, this function can be activated by the system control via a digital interface. The ITR 90 automatically terminates the degas process after 3 minutes, if it has not been stopped before.

The degas process should be run at pressures below 7.2×10⁻⁶ mbar (emission current 5 mA).

For a repeated degas process, the control signal first has to change from ON (+24 V) to OFF (0 V), to then start degas again with a new ON (+24 V) command. It is recommended that the degas signal be set to OFF again by the system control after 3 minutes of degassing, to achieve an unambiguous operating status.

The interface works in duplex mode. A nine byte string is sent continuously without

Commands are transmitted to the gauge in a five byte input (receive) string.

4.5 RS232C Interface The built-in RS232C interface allows transmission of digital measurement data and instrument conditions as well as the setting of instrument parameters.

4.5.1 Description of the Functions

Operational parameters

- Data rate 9600 Baud set value, no handshake
- Byte 8 data bits 1 stop bit

a request approx. every 20 ms.

- **Electrical connections**
- TxD Pin 13
 RxD Pin 14
- GND Pin 5
 - (Sensor cable connector)
- 4.5.1.1 Output String (Transmit)

Format of the output string

The complete output string (frame) is nine bytes (byte 0 \dots 8). The data string is seven bytes (byte 1 \dots 7).

Byte No	Function	Value	Comment
0	Length of data string	7	(Set value)
1	Page number	5	(For ITR 90)
2	Status		ightarrow Status byte
3	Error		\rightarrow Error byte
4	Measurement high byte	0 255	ightarrow Calculation of pressure value
5	Measurement low byte	0 255	ightarrow Calculation of pressure value
6	Software version	0 255	\rightarrow Software version
7	Sensor type	10	(For ITR 90)
8	Check sum	0 255	\rightarrow Synchronization

Synchronization

Synchronization of the master is achieved by testing three bytes:

Byte No	Function	Value	Comment
0	Length of data string	7	Set value
1	Page number	5	(For ITR 90)
8	Check sum of bytes No 1 7	0 255	Low byte of check sum ¹⁾

¹⁾ High order bytes are ignored in the check sum.

Status byte	Bit 1	Bit 0	Definiti	on			
-	0	0	Emissi	on off			
	0	1	Emissio	on 25 µA			
	1	0	Emissio	on 5 mA	A		
	1	1	Degas				
	Bit 2		Definiti	on			
	0		1000 m	nbar adju	stment off		
	1		1000 m	nbar adju	stment on		
	Bit 3		Definiti	on			
	0⇔1		Toggle string r	Toggle bit, changes with every string received correctly			
	Bit 5	Bit 4	Definiti	on			
	0	0	Curren	t pressur	e unit mbar		
	0	1	Curren	t pressur	e unit Torr		
	1	0	Curren	t pressur	e unit Pa		
	Bit 7	Bit 6	Definiti	on	_		
	х	х	Not use	ed			
Error byte	Bit 3	Bit 2	Bit 1	Bit 0	Definition		
-	х	х	х	х	Not used		
	Bit 7	Bit 6	Bit 5	Bit 4	Definition		
	0	1	0	1	Pirani adjusted poorly		
	1	0	0	0	BA error		
	1	0	0	1	Pirani error		
Software version	The so transmi	ftware ve tted strir	ersion of ng accord	the gaug ding to th	e can be calculated from the value of byte 6 of the e following rule:		
		Version	No = Val	ue _{Byte 6} /	20		
	(Examp sion 1.6	ble: Acco 6)	ording to	the abov	e formula, Value $_{Byte 6}$ of 32 means software ver-		
Calculation of the pressure value	The propriation	essure ca g on the te rule m	an be cal currently just be aj	lculated f selected	from bytes 4 and 5 of the transmitted string. De- I pressure unit (\rightarrow byte 2, bits 4 and 5), the ap-		
	As resu	ilt, the pr	essure v	alue resu	ults in the usual decimal format.		
		p _{mbar} =	$10^{((high byte})}$	× 256 + low byte) / 4000 - 12.5)		
		p _{⊤orr} =	10 ^{((high byte}	× 256 + low byte) / 4000 - 12.625)		
		p _{Pa} =	10 ^{((high byte}	× 256 + low byte	/ 4000 - 10.5)		

Example

The example is based on the following output string:

Byte No	0	1	2	3	4	5	6	7	8
Value	7	5	0	0	242	48	20	10	69

The instrument or controller (receiver) interprets this string as follows:

Byte No	Function	Value	Comment
0	Length of data string	7	(Set value)
1	Page number	5	ITR 90
2	Status	0	Emission = off Pressure unit = mbar
3	Error	0	No error
4 5	Measurement High byte Low byte	242 48	Calculation of the pressure: $p = 10^{((242 \times 256 + 48)/4000 - 12.5)} = 1000 \text{ mbar}$
6	Software version	20	Software version = 20 / 20 = 1.0
7	Sensor type	10	ITR 90
8	Check sum	69	$\begin{array}{l} 5+0+0+242+48+20+10=\\ 325_{dec}\triangleq01\;45_{hex}\\ \text{High order byte is ignored} \Rightarrow\\ \text{Check sum}=45_{hex}\triangleq69_{dec}\\ \end{array}$

4.5.1.2 Input String (Receive)

Format of the input string

For transmission of the commands to the gauge, a string (frame) of five bytes is sent (without <CR>). Byte 1 to byte 3 form the data string.

Byte no	Function	Value	Comment
0	Length of data string	3	(Set value)
1	Data		ightarrow admissible input strings
2	Data		ightarrow admissible input strings
3	Data		ightarrow admissible input strings
4	Check sum (from bytes No 1 3)	0 255	(low byte of sum) ¹⁾

¹⁾ High order bytes are ignored in the check sum.

Admissible input strings

For commands to the gauge, six defined strings are used:

		E	Byte N	0	
Command	0	1	2	3	4 ²⁾
Set the unit mbar in the display	3	16	62	0	78
Set the unit Torr in the display	3	16	62	1	79
Set the unit Pa in the display	3	16	62	2	80
Power-failure-safe storage of current unit	3	32	62	62	156
Switch degas on (switches itself off after 3 minutes)	3	16	93	148	1
Switch degas off before 3 minutes	3	16	93	105	214

²⁾ Only low order byte of sum (high order byte is ignored).

5 **Deinstallation**

DANGER DANGER: contaminated parts

(STOP)

Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Caution

Caution: vacuum component

Dirt and damages impair the function of the vacuum component. When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Procedure

Vent the vacuum system.

Before taking the gauge out of operation, make sure that this has no adverse effect on the vacuum system.

Depending on the programming of the superset controller, faults may occur or error messages may be triggered.

Follow the appropriate shut-down and starting procedures.

Take gauge out of operation.

Disconnect all cables from the gauge.

Remove gauge from the vacuum system and replace the protective lid.

6 Maintenance, Repair

6.1 Maintenance

DANGER: contaminated parts

Contaminated parts can be detrimental to health and environment. Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

The product is maintenance-free, If clean operating conditions are met.

6.1.1 Cleaning the Gauge

Small deposits on the electrode system can be removed by baking the anode (Degas $\rightarrow \square$ 17). In the case of severe contamination, the baffle can be exchanged easily ($\rightarrow \square$ 10). The sensor itself cannot be cleaned and needs to be replaced in case of severe contamination ($\rightarrow \square$ 24).

A slightly damp cloth normally suffices for cleaning the outside of the unit. Do not use any aggressive or scouring cleaning agents.

Make sure that no liquid can penetrate the product. Allow the product to dry thoroughly before putting it into operation again.

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filaments) are not covered by the warranty.

6.2 Adjusting the Gauge	The gauge is factory-calibrated. Through the use in different climatic conditions, fitting positions, aging or contamination ($\rightarrow \square$ 17) and after exchanging the sensor ($\rightarrow \square$ 24) a shifting of the characteristic curve can occur and readjustment can become necessary. Only the Pirani part can be adjusted.
6.2.1 Adjustment at Atmospheric Pressure	At the push of a button the digital value and thus the analog output are adjusted electronically to 10 V at atmospheric pressure. Adjustment is necessary if
	 at atmospheric pressure, the output signal is <10 V
	 at atmosphere, the digital value of the RS232C interface is < atmospheric pres- sure
	 when the vacuum system is vented, the output voltage reaches 10 V (limited to 10 V by the software) before the measured pressure has reached atmosphere
	• when the vacuum system is vented, the digital value of the RS232C interface reaches its maximum before the measured pressure has reached atmosphere.
Required tools	• Pin approx. ø1.3 × 50 mm (e.g. a bent open paper clip)
Procedure	O Operate gauge for approx. 10 minutes at atmospheric pressure.

If the gauge was operated before in the BA range, a coolingdown time of approx. 30 minutes is to be expected (gauge temperature = ambient temperature).

Insert the pin through the opening marked <FULL SCALE> and push the button inside for at least 5 s.

The zero point of the gauge is now adjusted.

6.3 What to Do in Case of Problems

Troubleshooting

Required tools / material

In the event of a fault or a complete failure of the output signal, the gauge can easily be checked.

- Voltmeter / ohmmeter
- Allen key, size 2.5 mm
- Spare sensor (if the sensor is faulty)

The output signal is available at the sensor cable connector (Pin 2 and Pin 12).

In case of an error, it may be helpful to just turn off the mains supply and turn it on again after 5 s.

Problem	Possible cause	Correction
Output signal permanently ≈0V	Sensor cable defective or not correctly connected	Check the sensor cable
	No supply voltage	Turn on the power supply
	Gauge in an undefined status	Turn the gauge off and on again (reset)
Output signal ≈0.3 V	Hot cathode error (sensor faulty)	Replace the sensor $(\rightarrow \blacksquare 24)$
Output signal ≈0.5 V	Pirani error (sensor defective)	Replace the sensor $(\rightarrow \cong 24)$
	Electronics unit not mounted correctly on sensor	Check the connection the electronics unit - sensor
No signal	Internal data connection not working	Turn the gauge off and on again after 5 s
		Replace the electronics unit
Gauge does not switch over to BA at low pressures	Pirani zero point out of tolerance	Carry out a zero point adjustment (\rightarrow \square 22)

Troubleshooting (sensor)

If the cause of a fault is suspected to be in the sensor, the following checks can be made with an ohmmeter (the vacuum system need not be vented for this purpose).

Separate the sensor from the electronics unit (\rightarrow \blacksquare 9). Using an ohmmeter, make the following measurements.

Ohmmeter measure- ment between pins			Possible cause
2 + 4	≈37 Ω	≫37 Ω	Pirani element 1 broken
4 + 5	≈37 Ω	≫37 Ω	Pirani element 2 broken
6 + 7	≈0.15 Ω	≫0.15 Ω	Filament of hot cathode broken
4 + 1	~	≪∞	Electrode - short circuit to ground
6 + 1	~	≪∞	Electrode - short circuit to ground
3 + 1	~	≪∞	Electrode - short circuit to ground
9 + 1	~	≪∞	Electrode - short circuit to ground
6 + 3	~	≪∞	Short circuit between electrodes
9 + 3	∞	≪∞	Short circuit between electrodes

View on sensor pins

Correction

All of the above faults can only be remedied by replacing the sensor (\rightarrow \cong 24).

6.4 Replacing the Sensor

Replacement is necessary, when

- the sensor is severely contaminated
- the sensor is mechanically deformed
- the sensor is faulty, e.g. filament of hot cathode broken (\rightarrow \cong 23)

P

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filaments) are not covered by the warranty.

Required tools / material

- Allen key, size 2.5 mm
- Spare sensor (\rightarrow \cong 25)

Procedure

Deinstall the gauge ($\rightarrow \blacksquare$ 20).

Deinstall the electronics unit from the faulty sensor and mount it to the new sensor ($\rightarrow \square$ 9).

Adjust the gauge (\rightarrow 🗎 21).

The new sensor is now installed.

1

	Ordering No.
Bake-out extension 100 mm	PT 590 300-T
Baffle DN 25 ISO-KF / DN 40 CF-R (\rightarrow 10)	PT 120 124-T

8 Spare Parts

When ordering spare parts, always indicate:

- All information on the product nameplate
- Description and part number

	Ordering No.
Replacement sensor ITR 90, flange DN 25 ISO-KF (including allen key)	PT 120 121-T
Replacement sensor ITR 90, flange DN 40 CF-R (including allen key)	PT 120 123-T

9 Storage

10 Returning the Product

I WARNING

WARNING: forwarding contaminated products

Contaminated products (e.g. radioactive, toxic, caustic or biological hazard) can be detrimental to health and environment.

Products returned to Pfeiffer Vacuum should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination (form under "www.pfeiffer-vacuum.com").

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer.

Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.

11 Disposal

		STOP DANGER
		DANGER: contaminated parts
		Contaminated parts can be detrimental to health and environment.
		Before beginning to work, find out whether any parts are contami- nated. Adhere to the relevant regulations and take the necessary pre- cautions when handling contaminated parts.
		WARNING: substances detrimental to the environment
		Products or parts thereof (mechanical and electric components, oper- ating fluids etc.) can be detrimental to the environment.
		Dispose of such substances in accordance with the relevant local regulations.
Separating the components	After disas	ssembling the product, separate its components according to the follow- a:
Contaminated components	Contamina must be de separated	ated components (radioactive, toxic, caustic or biological hazard etc.) econtaminated in accordance with the relevant national regulations, according to their materials, and disposed of.
Other components	Such com	ponents must be separated according to their materials and recycled.

A: Relationship Output Signal – Pressure

Conversion formulae

Conversion curve

Output signal U [V]	[mbar]	Pressure p [Torr]	[Pa]
0.3 / 0.5		Sensor error ($\rightarrow \blacksquare 23$)	<u> </u>
0.51 0.774		Inadmissible range	
0.774	5×10 ⁻¹⁰	3.75×10 ⁻¹⁰	5×10 ⁻⁸
1.00	1×10 ⁻⁹	7.5×10 ⁻¹⁰	1×10 ⁻⁷
1.75	1×10 ⁻⁸	7.5×10 ⁻⁹	1×10 ⁻⁶
2.5	1×10 ⁻⁷	7.5×10 ⁻⁸	1×10 ⁻⁵
3.25	1×10 ⁻⁶	7.5×10⁻ ⁷	1×10 ⁻⁴
4.00	1×10 ⁻⁵	7.5×10 ⁻⁶	1×10 ⁻³
4.75	1×10 ⁻⁴	7.5×10 ⁻⁵	1×10 ⁻²
5.50	1×10 ⁻³	7.5×10 ⁻⁴	1×10⁻¹
6.25	1×10 ⁻²	7.5×10 ⁻³	1×10 ⁰
7.00	1×10 ⁻¹	7.5×10 ⁻²	1×10 ¹
7.75	1×10 ⁰	7.5×10 ⁻¹	1×10 ²
8.50	1×10 ¹	7.5×10 ⁰	1×10 ³
9.25	1×10 ²	7.5×10 ¹	1×10 ⁴
10.00	1×10 ³	7.5×10 ²	1×10 ⁵
>10.00		Inadmissible range	

B: Gas Type Dependence

Conversion table

Indication range above 10⁻² mbar

Pressure indicated (gauge adjusted for air, Pirani-only mode)

28

Calibration in pressure range $10^{-2} \dots 1$ mbar

The gas type dependence in the pressure range $10^{-2} \dots 1$ mbar can be compensated by means of the following formula:

$p_{eff} = C \times$	indicated	pressure
----------------------	-----------	----------

Gas type	Calibration factor C
Air, O ₂ , CO	1.0
N ₂	0.9
CO ₂	0.5
Water vapor	0.7
Freon 12	1.0
H ₂	0.5
He	0.8
Ne	1.4
Ar	1.7
Kr	2.4
Xe	3.0
	$\begin{array}{c} \text{Gas type} \\ \text{Air, } O_2, \text{CO} \\ N_2 \\ \text{CO}_2 \\ \text{Water vapor} \\ \text{Freon 12} \\ H_2 \\ \text{He} \\ \text{Ne} \\ \text{Ar} \\ \text{Kr} \\ \text{Kr} \\ \text{Xe} \end{array}$

(The above calibration factors are mean values)

p_{eff} = C × indicated pressure

Calibration in pressure range <10⁻³ mbar

The gas type dependence in the pressure range $<10^{-3}$ mbar can be compensated by means of the following formula (gauge adjusted for air):

where	Gas type	Calibration factor C
	Air, O ₂ , CO, N2	1.0
	N ₂	1.0
	He	5.9
	Ne	4.1
	H ₂	2.4
	Ar	0.8
	Kr	0.5
	Xe	0.4

(The above calibration factors are mean values)

A mixture of gases and vapors is often involved. In this case, accurate determination is only possible with a partial-pressure measuring instrument.

C: Literature

 [1] www.pfeiffer.vacuum.com Instruction Sheet FullRange[®] Bayard-Alpert Gauge ITR 90 BG 5039 BDE Geman BG 5039 BEN English Pfeiffer Vacuum GmbH, D–35614 Asslar, Deutschland

Notes

Notes

A PASSION FOR PERFECTION

Vacuum solutions from a single source	Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.
Complete range	From a single component to complex systems:
of products	We are the only supplier of vacuum technology that provides a complete product portfolio.
Competence in	Benefit from our know-how and our portfolio of training
theory and practice	and provide first-class on-site-service worldwide.

Are you looking for a perfect vacuum solution? Please contact us:

Pfeiffer Vacuum GmbH

Headquarters • Germany Tel.: +49 (0) 6441 802-0 info@pfeiffer-vacuum.de www.pfeiffer-vacuum.com

